Palladium-Catalyzed Direct ortho Alkoxylation of Aromatic Azo Compounds with Alcohols

Zhangwei Yin,[†] Xiaoqing Jiang,[†] and Peipei Sun*^{,†,‡}

† Jiangsu Key Laboratory of Biofunctional Materials, College [of C](#page-4-0)hemistry and Materials Science, Nanjing Normal University, Nanjing 210097, China

‡ Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing 210023, China

S Supporting Information

[ABSTRACT:](#page-4-0) An efficient and highly regioselective synthesis of 2-alkoxy aromatic azo compounds via palladium(II) catalyzed alkoxylation of azobenzene derivatives directed by the azo group using alcohols as the alkoxylation reagents and $PhI(OAc)₂$ as the oxidant has been developed. The method is applicable to both primary and secondary alcohols and affords moderate to good yields.

 \blacksquare n the past decade, transition-metal-catalyzed direct functionalization of unreactive C $-$ H bonds has achieved great success and been applied in the syntheses of many useful polyfunctional n the past decade, transition-metal-catalyzed direct functionalization of unreactive C−H bonds has achieved great success compounds. A series of coordinating groups have been employed as the directing groups in this strategy.¹ Compared with the formation of C−C bonds, the reports of the formation of C−O bonds are less well established, m[ay](#page-4-0)be because of the electronegativities of the elements as well as the metal−ligand bond strengths.² Introducing an alkoxy group on the aromatic ring has great value in organic synthesis because of the strong electron-donati[ng](#page-5-0) conjugation effect of this group. In addition, the aryl ether functionality is a common motif of pharmaceuticals, functional materials, and many other fine chemicals.³ Therefore, the development of new methodologies for direct alkoxylation of C−H bonds is becoming a valuable and ato[m](#page-5-0)economical strategy to construct this structural block.⁴ A few research groups, including ours, have reported directed ortho alkoxylation of the C[\(s](#page-5-0)p²)–H bonds of arenes or C(sp³)–H bonds catalyzed by palladium using oxime ether, N-methoxyamide, amide, and cyano as the directing goups.⁵ These successful results push us to continue to carry out our research in this area.

Aromatic azo derivatives, a group of important conjugated compounds, are widely used not only in the traditional chemical industry, such as dyes and pigments,⁶ but more noticeably in many newly rising areas of science and technology, such as photochemical molecular switches, su[pe](#page-5-0)rmolecular chemistry of host−guest recognition, self-assembly of liquid-crystal materials, analysis of biomedical imaging, chemical light-driven molecular motors, energy conversion, and so on.⁷ Therefore, the synthesis of aromatic azo derivatives and the modification and functionalization of these compoun[d](#page-5-0)s in recent years have once again become the academic hot-spot. A few examples have concerned palladium-catalyzed functionalization of aromatic azo compounds.⁸ Very recently, palladium-catalyzed *ortho* acylation and halogenation of aromatic azo compounds were reported.⁹ A

rhodium(III)-catalyzed C−H bond addition of azobenzenes to aldehydes was also developed.¹⁰ Herein we describe a Pdcatalyzed *ortho* alkoxylation of C(sp²)–H bonds on the aromatic ring directed by the azo group [u](#page-5-0)sing alcohols as alkoxylation reagents to synthesize 2-alkoxy aromatic azo compounds.

We started to optimize the reaction conditions by using azobenzene $(1a)$ as the substrate and methanol $(1b)$ as both the alkoxylation reagent and the solvent (Table 1). In the absence of $Pd(OAc)₂$, the reaction did not proceed at all. The presence of $Pd(OAc)_2$ (10 mol %) [a](#page-1-0)nd $PhI(OAc)_2$ as an oxidant led to a formation of the desired monomethoxylation product 3aa with very high selectivity. In order to improve the yield, a series of oxidants were tested, and no conversion was observed when $Cu(OAc)₂$, AgOAc, benzoquinone (BQ), or O₂ was used (entries 12−15), while a very low yield was obtained when $K_2S_2O_8$ or $(NH_4)_2S_2O_8$ was used (entries 10 and 11). PhI(OAc)₂ was proved to be the best oxidant, and the appropriate amount of it was 2 equiv (entries 1 and 9). Some additives such as AcOH, TFA, TsOH, and CH_3SO_3H were also tested. In the presence of AcOH, the yield did not increase evidently (entries 2−4), but the presence of TFA, TsOH, and $CH₃SO₃H$ was obviously not favorable for this reaction (entries 5−7). Therefore, no additive was employed in our determined reaction conditions. Other palladium catalysts such as $PdCl_2$, $PdCl_2(CH_3CN)_2$, and $PdCl₂(PPh₃)₂$ showed low catalytic activity (entries 16−18), while the Ru and Rh catalysts $[RuCl_2(p\text{-cymene})]_2$ and $[RhCp*Cl₂]$ ₂ demonstrated entirely no efficiency in this reaction (entries 19 and 20). Different reaction temperatures were also investigated. At 80 °C, the best result was obtained. Decreasing the temperature to 60 °C or room temperature brought a reduction in the yield. Also, there was no obvious promotion with an increase in the temperature to $100\,^{\circ}\text{C}$ (entry 1). Finally, the

Received: July 26, 2013 Published: September 5, 2013

Table 1. Optimization of the Reaction Conditions^a

"Unless otherwise specified, the reactions were carried out in a sealed tube in the presence of 1a (0.50 mmol), 2a (2 mL), catalyst (10 mol %), and oxidant (1 mmol) under an air atmosphere at 80 °C for 24 h. b Isolated yields. "At room temperature, 60 °C, and 100 °C, respectively. $dPd(OAc)$ ₂ (5 mol %) was used.

yield decreased sharply when 5 mol % $Pd(OAc)₂$ was used (entry 8).

With suitable conditions for the methoxylation of azobenzene in hand, the reactivities of different alcohols as the alkoxylation reagents were investigated. The results are revealed in Table 2. To our delight, the alkoxylation with ethanol (2b) afforded product 3ab in a yield of 63%. Unfortunately, propanol (2c) a[nd](#page-2-0) isopropanol (2d) did not undergo the reaction smoothly to give corresponding alkoxylation products under the same conditions. Then we attempted to employ an additive. To our surprise, the propoxylation and isopropoxylation products 3ac and 3ad were obtained in yields of 77% and 55%, respectively, upon the addition of 20 equiv of AcOH. Under these reaction conditions, the alkoxylation products with some other primary or secondary alcohols such as butanol (2e), isobutanol (2f), and cyclopentanol (2g) were achieved in moderate yields with reaction times of 36− 72 h (3ae−ag), while more sterically hindered tert-butyl alcohol failed to provide the desired product, which was similar to the results of previously reported alkoxylation reactions.⁵ It was interesting that the reaction gave the monoalkoxylation products with very high selectivity for the alcohols we used.

After screening of different alcohols, we explored the scope of differently substituted azobenzenes. Substituents on the aromatic moiety of the aromatic azo compounds influenced the efficiency of this coupling reaction significantly. It was unfortunate that the method did not seem to be very efficient for the ortho- or parasubstituted azobenzene derivatives under the present reaction conditions. For example, for the methoxylation of 2,2′ dimethylazobenzene and 4,4′-dimethylazobenzene, only trace desired products were generated. However, a range of metasubstituted azobenzenes could be adopted in our alkoxylation

methodology. The reaction of azobenzene derivatives having an electron-donating group such as methyl or methoxy at the meta position of the phenyl ring proceeded smoothly to give the corresponding products. With primary alcohols (methanol, ethanol, propanol, isobutanol), satisfactory yields of 51−70% were obtained (3ba, 3bc, 3bf, 3eb, and 3ec), while secondary alcohols (isopropanol and cyclopentanol) gave lower yields (51% and 47% for 3bd and 3bg, respectively). Alkoxylation of aromatic azo compounds bearing a weak electron-withdrawing group (Cl, Br) at the meta position of the phenyl ring was less efficient apart from methoxylation reaction (3ca, 3da). For example, the propoxylation and isopropoxylation reactions needed a higher temperature (100 °C) and longer reaction times (36−72 h) to afford the products (3cc, 3cd, 3dc, 3dd). Other electron-withdrawing groups, such as acetyl, could also be functionalized to bring out the desired product, albeit with a relatively low yield (3fa).

On the basis of previous related studies^{5,9} and our experiments, a possible mechanism of this palladium-catalyzed alkoxylation of aromatic azo compounds is [pro](#page-5-0)posed, as shown in Scheme 1. First, coordination of azobenzene (1) with the Pd(II) catalyst and subsequent C−H activation would result in cyclopallad[ati](#page-3-0)on to form palladacycle A. The arylpalladium intermediate A would then be oxidized to Pd (IV) species B by $PhI(OAc)$, in the presence of alcohol. Next, the final product 3 would be obtained via reductive elimination of B, followed by regeneration of the $Pd(II)$ catalyst. In addition, Ritter¹¹ proposed a $Pd(II)/Pd(III)$ catalytic cycle through a bimetallic $Pd(III)$ complex for a similar directed C−O bond formati[on](#page-5-0) reaction. Recently, Sunoj^{5c} suggested a $Pd(II)/Pd(0)$ process for direct

Table 2. The ortho Alkoxylation of Azobenzene Derivatives with Alcohols^a

³dd 40% (100 °C, 72 h)^b

alkoxylation of N-methoxybenzamides. These possible mechanisms should not be excluded.

In summary, we have developed an efficient route for direct alkoxylation of aromatic azo compounds via Pd-catalyzed, azo-

[&]quot;Unless otherwise specified, the reactions were carried out with aromatic azo compound 1 (0.5 mmol), alcohol 2 (2 mL), Pd(OAc)₂ (10 mol %), and $PhI(OAc)_2$ (1.0 mmol) under an air atmosphere at 80 °C for 24 h. All listed yields are isolated yields. b_{20} equiv of AcOH was used as an and $PhI(OAc)_2$ (1.0 mmol) under an air atmosphere at 80 °C for 24 h. All listed additive.

Scheme 1. Plausible Reaction Mechanism

group-directed C(sp²)−H bond activation, in which PhI(OAc)₂ was found to be a particularly effective oxidant. The reaction exhibited functional group tolerance, as a series of azobenzene derivatives with either electron-donating or electron-withdrawing groups could be alkoxylated directly and efficiently. The method was applicable to both primary and secondary alcohols. This work provides a convenient method for the syntheses of 2-alkoxy aromatic azo compounds from readily accessible starting materials under mild reaction conditions and therefore is an important extension of the chemistry of azo compounds.

EXPERIMENTAL SECTION

General. All of the reactions were run in a sealed tube with a Teflonlined cap under an air atmosphere. Chemicals were commercially available and used without purification. Aromatic azo compound substrates were prepared according to the literature procedure.¹² ¹H NMR and ¹³C NMR spectra were recorded in CDCl₃ using $(CH_3)_4$ Si (for ¹H, δ = 0.00; for ¹³C, δ = 77.00) as the internal standar[d. T](#page-5-0)he following abbreviations are used to denote the multiplicities: s = singlet, $d =$ doublet, $t =$ triplet, $q =$ quartet, $m =$ multiplet. Melting points are uncorrected. HRMS data were obtained by ESI on a TOF mass analyzer.

General Experimental Procedures and Characterizations. Azobenzene (0.5 mmol), alcohol (2 mL), $Pd(OAc)$ ₂ (0.05 mmol), and PhI(OAc)_2 (1.0 mmol) were added to a 25 mL sealed tube with a Teflon lined cap. The mixture was heated at 80 °C (oil bath temperature) for 24 h. After the mixture was cooled to room temperature, the volatiles were removed under reduced pressure, and the residue was purified by a flash column chromatography on silica gel using hexane/ethyl acetate as the eluent to give the corresponding product.

(E)-1-(2-Methoxyphenyl)-2-phenyldiazene (3aa).¹³ Yield: 75% (79 mg). Red thick oil. ¹H NMR (CDCl₃, 400 MHz): δ 7.95−7.93 (m, 2H), 7.70 (dd, $J_1 = 8.0$ Hz, $J_2 = 1.6$ Hz, 1H), 7.55–7.45 (m, [4H](#page-5-0)), 7.12 (dd, $J_1 =$ 8.0 Hz, J_2 = 0.6 Hz, 1H), 7.07–7.03 (m, 1H), 4.06 (s, 3H). ¹³C NMR (CDCl3, 100 MHz): δ 157.0, 153.2, 142.3, 132.5, 130.8, 129.0, 123.0, 120.8, 117.0, 112.7, 56.4.

(E)-1-(2-Ethoxyphenyl)-2-phenyldiazene (3ab). Yield: 63% (72 mg). Reddish-orange oil. ¹H NMR (CDCl₃, 400 MHz): δ 7.94 (d, J = 1.2 Hz, 2H), 7.69 (dd, J₁ = 8.0 Hz, J₂ = 2.0 Hz, 1H), 7.55−7.42 (m, 4H), 7.12 (dd, J₁ = 8.0 Hz, J₂ = 1.0 Hz, 1H), 7.06−7.02 (m, 1H), 4.29 (q, J = 6.8 Hz, 2H), 1.55 (t, J = 7.2 Hz, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ 156.5, 153.1, 142.6, 132.4, 130.7, 129.1, 123.0, 120.8, 117.0, 114.5, 65.3, 14.9. HRMS-ESI (m/z) : calcd for C₁₄H₁₅N₂O [M + H]⁺ 227.1179, found 227.1168.

(E)-1-Phenyl-2-(2-propoxyphenyl)diazene (3ac). Yield: 77% (93 mg). Red thick oil. ¹H NMR (CDCl₃, 400 MHz): δ 7.97−7.94 (m, 2H), 7.70 (dd, $J_1 = 8.0$ Hz, $J_2 = 1.6$ Hz, 1H), 7.56–7.42 (m, 4H), 7.12 (dd, $J_1 =$ 8.4 Hz, $J_2 = 1.2$ Hz, 1H), 7.06–7.02 (m, 1H), 4.20 (t, J = 6.4 Hz, 2H), 1.99−1.92 (m, 2H), 1.13 (t, J = 7.2 Hz, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ 156.7, 153.2, 142.7, 132.3, 130.7, 129.0, 123.0, 120.8, 117.0, 114.7, 71.3, 22.7, 10.6. HRMS-ESI (m/z) : calcd for C₁₅H₁₇N₂O [M + H]⁺ 241.1341, found 241.1346.

(E)-1-(2-Isopropoxyphenyl)-2-phenyldiazene (3ad). Yield: 55% (66 mg). Red thick oil. ¹H NMR (CDCl₃, 400 MHz): δ 7.94 (d, J = 1.2 Hz, 2H), 7.69 (dd, $J_1 = 8.0$ Hz, $J_2 = 1.6$ Hz, 1H), 7.56–7.48 (m, 3H), 7.44– 7.40 (m, 1H), 7.14 (dd, J₁ = 8.0 Hz, J₂ = 1.0 Hz, 1H), 7.08–7.04 (m, 1H), 4.72 (m, 1H), 1.45 (d, J = 4.0 Hz, 6H). ¹³C NMR (CDCl₃, 100 MHz): δ 156.0, 153.1, 144.1, 132.1, 130.7, 129.0, 123.0, 121.5, 118.5, 117.1, 73.8, 22.3. HRMS-ESI (m/z) : calcd for C₁₅H₁₇N₂O $[M + H]^+$ 241.1341, found 241.1338.

(E)-1-(2-Butoxyphenyl)-2-phenyldiazene (3ae). Yield: 62% (79 mg). Red thick oil. ¹H NMR (CDCl₃, 400 MHz): δ 7.96−7.94 (m, 2H), 7.70 (dd, $J_1 = 8.0$ Hz, $J_2 = 1.6$ Hz, 1H), 7.56–7.42 (m, 4H), 7.12 $(dd, J_1 = 8.4 \text{ Hz}, J_2 = 0.8 \text{ Hz}, 1 \text{ H}), 7.06 - 7.02 \text{ (m, 1 H)}, 4.22 \text{ (t, J = 6.4 Hz},$ 2H), 1.96−1.89 (m, 2H), 1.64−1.55 (m, 2H), 1.04 (t, J = 7.2 Hz, 3H).
¹³C NMR (CDCl₃, 100 MHz): δ 156.7, 153.2, 142.7, 132.3, 130.7, 129.0, 123.0, 120.8, 117.0, 114.7, 69.6, 31.4, 19.3, 13.9. HRMS-ESI (m/z): calcd for $C_{16}H_{19}N_2O$ $[M + H]^+$ 255.1497, found 255.1483.

(E)-1-(2-Isobutoxyphenyl)-2-phenyldiazene (3af). Yield: 65% (83 mg). Red thick oil. ¹H NMR (CDCl₃, 400 MHz): δ 7.94 (d, J = 2.8 Hz, 2H), 7.70 (dd, $J_1 = 8.0$ Hz, $J_2 = 1.6$ Hz, 1H), 7.56–7.41 (m, 4H), 7.11 $(dd, J_1 = 8.4 \text{ Hz}, J_2 = 0.8 \text{ Hz}, 1\text{ H}), 7.06 - 7.01 \text{ (m, 1H)}, 3.97 \text{ (d, } J = 6.4 \text{ Hz},$ 2H), 2.29–2.22 (m, 1H), 1.12 (d, J = 6.4 Hz, 6H). ¹³C NMR (CDCl₃, 100 MHz): δ 156.8, 153.2, 142.7, 132.3, 130.6, 129.0, 123.0, 120.7, 117.0, 114.7, 76.1, 28.5, 19.3. HRMS-ESI (m/z) : calcd for C₁₆H₁₉N₂O $[M + H]$ ⁺ 255.1497, found 255.1501.

(E)-1-(2-(Cyclopentyloxy)phenyl)-2-phenyldiazene (3ag). Yield: 52% (69 mg). Red thick oil. ¹H NMR (CDCl₃, 400 MHz): δ 7.96– 7.94 (m, 2H), 7.69 (dd, J₁ = 8.0 Hz, J₂ = 1.6 Hz, 1H), 7.57–7.40 (m, 4H), 7.14−7.01 (m, 2H), 5.00 (t, J = 2.4 Hz, 1H), 2.08−1.87 (m, 6H), 1.69− 1.62 (m, 2H). ¹³C NMR (CDCl₃, 100 MHz): δ 155.9, 153.2, 143.5, 132.1, 130.6, 129.1, 123.0, 120.8, 117.0, 116.8, 81.8, 33.0, 24.0. HRMS-ESI (m/z) : calcd for C₁₇H₁₉N₂O [M + H]⁺ 267.1497, found 267.1492.

(E)-1-(2-Methoxy-5-methylphenyl)-2-m-tolyldiazene (3ba). Yield: 69% (83 mg). Reddish-orange solid, mp 71−73 °C. ¹ H NMR (CDCl3, 400 MHz : δ 7.76–7.73 (m, 2H), 7.49 (d, J = 1.6 Hz, 1H), 7.41 (t, J = 8.0 Hz, 1H), 7.30−7.26 (m, 2H), 7.01 (d, J = 8.0 Hz, 1H), 4.03 (s, 3H), 2.47 (s, 3H), 2.37 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ 155.0, 153.3, 142.0, 138.9, 132.9, 131.5, 130.3, 128.8, 122.6, 121.0, 117.2, 112.7, 56.5, 21.3, 20.5. HRMS-ESI (m/z) : calcd for $C_{15}H_{17}N_2O[M+H]^+$ 241.1341, found 241.1352.

(E)-1-(2-Ethoxy-5-methylphenyl)-2-m-tolyldiazene (3bb). Yield: 57% (72 mg). Orange solid, mp 57–59 °C. ¹H NMR (CDCl₃, 400 MHz): δ 7.75 (d, J = 6.4 Hz, 2H), 7.48 (d, J = 1.6 Hz, 1H), 7.41 (t, J = 8.0 Hz, 1H), 7.30 (s, 1H), 7.24 (dd, $J_1 = 8.4$ Hz, $J_2 = 2.0$ Hz, 1H), 7.01 (d, $J =$ 8.4 Hz, 1H), 4.26 (q, J = 6.8 Hz, 2H), 2.47 (s, 3H), 2.36 (s, 3H), 1.53 (t, J $= 7.0$ Hz, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ 154.5, 153.2, 142.4, 138.9, 132.8, 131.5, 130.4, 128.8, 123.1, 120.6, 117.2, 114.8, 65.6, 21.4, 20.5, 14.9. HRMS-ESI (m/z) : calcd for C₁₆H₁₈N₂ONa [M + Na]⁺ 277.1317, found 277.1333.

(E)-1-(5-Methyl-2-propoxyphenyl)-2-m-tolyldiazene (3bc). Yield: 70% (94 mg). Red thick oil. ¹H NMR (CDCl₃, 400 MHz): δ 7.76−7.75 (m, 2H), 7.49 (d, J = 1.6 Hz, 1H), 7.43−7.39 (m, 1H), 7.30−7.23 (m, $2H$), 7.02 (d, J = 8.4 Hz, 1H), 4.15 (t, J = 6.4 Hz, 2H), 2.48 (s, 3H), 2.36 (s, 3H), 1.96−1.91 (m, 2H), 1.11 (t, J = 7.6 Hz, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ 154.7, 153.3, 142.5, 138.8, 132.8, 131.4, 130.4, 128.8, 123.2, 120.5, 117.2, 115.0, 71.7, 22.7, 21.4, 20.5, 10.5. HRMS-ESI (m/z): calcd for $C_{17}H_{21}N_2O$ [M + H]⁺ 269.1648, found 269.1642.

(E)-1-(2-Isopropoxy-5-methylphenyl)-2-m-tolyldiazene (3bd). Yield: 51% (68 mg). Red thick oil. ¹H NMR (CDCl₃, 400 MHz): δ 7.78−7.76 (m, 2H), 7.50 (d, J = 1.6 Hz, 1H), 7.45−7.40 (m, 1H), 7.31− 7.29 (m, 1H), 7.25−7.22 (m, 1H), 7.05 (d, J = 8.0 Hz, 1H), 4.65 (m, 1H), 2.49 (s, 3H), 2.38 (s, 3H), 1.44 (d, J = 6.0 Hz, 6H). 13C NMR (CDCl3, 100 MHz): δ 154.0, 153.2, 144.0, 138.9, 132.7, 131.5, 131.4, 128.8, 123.5, 120.3, 119.2, 117.2, 74.4, 22.3, 21.4, 20.6. HRMS-ESI (m/ z): calcd for $C_{17}H_{21}N_2O$ [M + H]⁺ 269.1648, found 269.1653.

(E)-1-(2-Isobutoxy-5-methylphenyl)-2-m-tolyldiazene (3bf). Yield: 67% (95 mg). Red thick oil. ¹H NMR (CDCl₃, 400 MHz): δ 7.78–7.76 (m, 2H), 7.49 (d, J = 1.6 Hz, 1H), 7.44−7.40 (m, 1H), 7.30−7.29 (m, 1H), 7.25−7.23 (m, 1H), 7.01 (d, J = 8.4 Hz, 1H), 3.95 (d, J = 6.4 Hz, 2H), 2.48 (s, 3H), 2.37 (s, 3H), 2.29–2.19 (m, 1H), 1.11 (d, J = 6.8 Hz, 6H). 13C NMR (CDCl3, 100 MHz): δ 154.9, 153.3, 142.5, 138.8, 132.8, 131.4, 130.3, 128.8, 123.4, 120.3, 117.1, 115.1, 76.6, 28.5, 21.4, 20.5, 19.3. HRMS-ESI (m/z) : calcd for C₁₈H₂₃N₂O [M + H]⁺ 283.1805, found 283.1803.

(E)-1-(2-(Cyclopentyloxy)-5-methylphenyl)-2-m-tolyldiazene (3bg). Yield: 47% (69 mg). Red thick oil. ¹H NMR (CDCl₃, 400 MHz): δ 7.76−7.74 (m, 2H), 7.48−7.47 (m, 1H), 7.41 (t, J = 8.2 Hz, 1H), 7.30 $(t, J = 0.4 \text{ Hz}, 1\text{H})$, 7.24–7.21 (m, 1H), 7.02 (d, J = 8.4 Hz, 1H), 4.95 (m, 1H), 2.48 (s, 3H), 2.36 (s, 3H), 2.04−2.02 (m, 2H), 1.95−1.89 (m, 4H), 1.66 (m, 2H). ¹³C NMR (CDCl₃, 100 MHz): δ 153.8, 153.2, 143.4, 138.8, 132.7, 131.4, 130.5, 128.8, 123.4, 120.3, 117.3, 117.2, 82.3, 32.9, 23.9, 21.4, 20.5. HRMS-ESI (m/z) : calcd for C₁₉H₂₃N₂O [M + H]⁺ 295.1810, found 295.1823.

(E)-1-(5-Chloro-2-methoxyphenyl)-2-(3-chlorophenyl)diazene (3ca). Yield: 62% (87 mg). Orange solid, mp 77–79 °C. ¹H NMR $(CDCl₃, 400 MHz): \delta 7.91–7.89 (m, 1H), 7.86–7.81 (m, 1H), 7.69 (d,$ $J = 2.8$ Hz, 1H), 7.49–7.42 (m, 3H), 7.05 (d, $J = 8.8$ Hz, 1H), 4.05 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ 156.0, 153.6, 142.1, 135.2, 132.3, 130.9, 130.1, 126.5, 122.8, 121.8, 117.0, 114.1, 56.7. HRMS-ESI (m/z): calcd for $C_{13}H_{11}Cl_2N_2O$ $[M + H]^+$ 281.0248, found 281.0272.

(E)-1-(5-Chloro-2-ethoxyphenyl)-2-(3-chlorophenyl)diazene (3cb). Yield: 43% (63 mg). Orange solid, mp 54–55 °C. ¹H NMR (CDCl3, 400 MHz): δ 7.91−7.90 (m, 1H), 7.87−7.84 (m, 1H), 7.69 (d, $J = 2.8$ Hz, 1H), 7.48–7.45 (m, 2H), 7.40 (dd, $J_1 = 8.8$ Hz, $J_2 = 2.4$ Hz, 1H), 7.05 (d, J = 9.2 Hz, 1H), 4.30 (q, J = 7.2 Hz, 2H), 1.55 (t, J = 6.8 Hz, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ 155.5, 153.6, 142.4, 135.1, 132.2, 130.9, 130.1, 126.5, 122.6, 122.0, 117.0, 115.8, 65.7, 14.8. HRMS-ESI (m/z) : calcd for C₁₄H₁₃Cl₂N₂O [M + H]⁺ 295.0405, found 295.0418.

(E)-1-(5-Chloro-2-propoxyphenyl)-2-(3-chlorophenyl)diazene (3cc). Yield: 59% (91 mg). Red thick oil. ${}^{1}H$ NMR (CDCl₃, 400 MHz): δ 7.90 (d, J = 1.2 Hz, 1H), 7.86–7.83 (m, 1H), 7.68 (d, J = 2.4 Hz, 1H), 7.48−7.46 (m, 2H), 7.40 (dd, J_1 = 8.8 Hz, J_2 = 2.4 Hz, 1H), 7.05 (d, J = 8.8 Hz, 1H), 4.16 (t, J = 6.4 Hz, 2H), 1.94 (m, 2H), 1.12 (t, J = 7.6 Hz, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ 155.7, 153.6, 142.5, 135.1, 132.0, 130.9, 130.1, 126.5, 122.5, 122.1, 117.0, 115.9, 71.6, 22.6, 10.5. HRMS-ESI (m/z) : calcd for $C_{15}H_{15}Cl_2N_2O$ $[M + H]^+$ 309.0561, found 309.0567.

(E)-1-(5-Chloro-2-isopropoxyphenyl)-2-(3-chlorophenyl)diazene (3cd). Yield: 35% (54 mg). Orange solid, mp 50–52 °C. ¹H NMR $(CDCl₃, 400 MHz): \delta 7.91–7.90 (m, 1H), 7.86–7.83 (m, 1H), 7.68 (d,$ $J = 2.4$ Hz, 1H), 7.50−7.45 (m, 2H), 7.39 (dd, $J_1 = 8.4$ Hz, $J_2 = 2.4$ Hz, 1H), 7.06 (d, J = 5.6 Hz, 1H), 4.70 (m, 1H), 1.45 (d, J = 6.0 Hz, 6H). ¹³C NMR (CDCl₃, 100 MHz): δ 154.9, 153.6, 143.8, 135.1, 132.1, 130.9, 130.1, 127.1, 122.6, 122.2, 119.4, 117.1, 74.1, 22.2. HRMS-ESI (m/z): calcd for $C_{15}H_{15}Cl_2N_2O$ $[M + H]^+$ 309.0561, found 309.0566.

(E)-1-(5-Bromo-2-methoxyphenyl)-2-(3-bromophenyl)diazene (3da). Yield: 66% (122 mg). Orange solid, mp 140−142 °C. ¹H NMR $(CDCl₃, 400 MHz): \delta 8.05$ (t, J = 2.0 Hz, 1H), 7.91–7.88 (m, 1H), 7.81 $(d, J = 2.4 \text{ Hz}, 1\text{ H}), 7.63-7.56 \text{ (m, 2H)}, 7.42 \text{ (t, } J = 8.0 \text{ Hz}, 1\text{ H}), 7.01 \text{ (d, }$ $J = 8.8$ Hz, 1H), 4.05 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ 156.4, 153.7, 142.4, 135.2, 133.9, 130.5, 124.6, 123.4, 123.2, 120.0, 114.6, 113.8, 56.6. HRMS-ESI (m/z) : calcd for $C_{13}H_{11}Br_2N_2O [M + H]^+$ 370.9218, found 370.9240.

(E)-1-(5-Bromo-2-ethoxyphenyl)-2-(3-bromophenyl)diazene (3db). Yield: 47% (90 mg). Orange solid, mp 77–79 °C. ¹H NMR $(CDCl₃, 400 MHz): \delta 8.06$ (t, J = 2.0 Hz, 1H), 7.91–7.88 (m, 1H), 7.81 $(d, J = 2.4 \text{ Hz}, 1H), 7.63-7.60 \text{ (m, 1H)}, 7.56-7.53 \text{ (m, 1H)}, 7.42 \text{ (t, } J =$ 8.0 Hz, 1H), 7.00 (d, J = 8.8 Hz, 1H), 4.27 (q, J = 6.8 Hz, 2H), 1.55 (t, J = 7.2 Hz, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ 155.9, 153.7, 142.7, 135.1, 133.8, 130.4, 125.0, 123.2, 123.1, 120.0, 116.2, 113.8, 65.6, 14.8. HRMS-ESI (m/z) : calcd for C₁₄H₁₃Br₂N₂O [M + H]⁺ 384.9374, found 384.9377.

(E)-1-(5-Bromo-2-propoxyphenyl)-2-(3-bromophenyl)diazene (3dc). Yield: 65% (129 mg). Orange solid, mp 55−57 °C. ¹H NMR

 $(CDCl_3, 400 MHz): \delta 8.06$ (t, J = 2.0 Hz, 1H), 7.90–7.88 (m, 1H), 7.81 $(d, J = 2.4 \text{ Hz}, 1H), 7.63 - 7.60 \text{ (m, 1H)}, 7.53 \text{ (dd, } J_1 = 8.8 \text{ Hz}, J_2 = 2.8 \text{ Hz},$ 1H), 7.41 (t, J = 8.0 Hz, 1H), 7.00 (d, J = 8.8 Hz, 1H), 4.15 (t, J = 6.4 Hz, 2H), 1.94 (m, 2H), 1.12 (t, $J = 6.8$ Hz, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ 156.1, 153.7, 142.8, 135.1, 133.8, 130.4, 125.1, 123.1, 123.0, 120.0, 116.3, 113.7, 71.6, 22.6, 10.4. HRMS-ESI (m/z): calcd for $C_{15}H_{15}Br_2N_2O$ $[M + H]^+$ 398.9531, found 398.9515.

(E)-1-(5-Bromo-2-isopropoxyphenyl)-2-(3-bromophenyl)diazene (3dd). Yield: 40% (79 mg). Orange solid, mp 62–64 °C. ¹H NMR $(CDCl_3, 400 MHz): \delta 8.06$ (t, J = 2.0 Hz, 1H), 7.90–7.88 (m, 1H), 7.81 $(d, J = 2.4 \text{ Hz}, 1H), 7.63–7.60 \text{ (m, 1H)}, 7.53 \text{ (dd, } J_1 = 8.8 \text{ Hz}, J_2 = 2.8 \text{ Hz},$ 1H), 7.42 (t, J = 8.0 Hz, 1H), 7.03 (d, J = 8.8 Hz, 1H), 4.69 (m, 1H), 1.45 $(d, J = 6.0 \text{ Hz}, 6\text{H})$. ¹³C NMR (CDCl₃, 100 MHz): δ 155.4, 153.7, 144.0, 135.0, 133.8, 130.4, 125.1, 123.1, 123.0, 120.1, 119.7, 114.3, 74.0, 22.6, 22.2. HRMS-ESI (m/z) : calcd for $C_{15}H_{15}Br_2N_2O$ $[M + H]^+$ 398.9531, found 398.9542.

(E)-1-(2-Ethoxy-5-methoxyphenyl)-2-(3-methoxyphenyl)diazene (3eb). Yield: 55% (79 mg). Red thick oil. ¹H NMR (CDCl₃, 400 MHz): δ 7.61−7.58 (m, 1H), 7.49 (t, J = 2.4 Hz, 1H), 7.44 (t, J = 8.0 Hz, 1H), 7.29 (t, J = 2.8 Hz, 1H), 7.08−7.03 (m, 3H), 4.25 (q, J = 6.8 Hz, 2H), 3.92 (s, 3H), 3.86 (s, 3H), 1.51 (t, J = 7.2 Hz, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ 160.3, 154.3, 151.5, 142.9, 129.7, 119.6, 117.6, 117.3, 117.1, 106.2, 100.4, 66.9, 55.8, 55.4, 15.1. HRMS-ESI (m/z) : calcd for $C_{16}H_{19}N_2O_3$ $[M + H]^+$ 287.1396, found 287.1401.

(E)-1-(5-Methoxy-2-propoxyphenyl)-2-(3-methoxyphenyl) *diazene (3ec)*. Yield: 51% (76 mg). Red thick oil. $\rm ^1H$ NMR (CDCl₃, 400 MHz): δ 7.61−7.58 (m, 1H), 7.50 (t, J = 2.4 Hz, 1H), 7.47−7.42 (m, 1H), 7.29 (t, J = 2.8 Hz, 1H), 7.09–7.00 (m, 3H), 4.14 (t, J = 6.4 Hz, 2H), 3.91 (s, 3H), 3.86 (s, 3H), 1.91−1.90 (m, 2H), 1.11 (t, J = 7.2 Hz, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ 160.3, 154.3, 154.2, 151.8, 142.9, 129.7, 119.6, 117.7, 117.4, 117.3, 105.7, 100.3, 72.9, 55.8, 55.4, 22.9, 10.6. HRMS-ESI (m/z) : calcd for C₁₇H₂₁N₂O₃ [M + H]⁺ 301.1552, found 301.1556.

(E)-1-(5-Acetyl-2-methoxyphenyl)-2-(3-acetylphenyl)diazene (3fa). Yield: 42% (62 mg). Orange solid, mp 129–131 °C. ¹H NMR $(CDCl₃, 400 MHz): \delta 8.50$ (t, J = 2.0 Hz, 1H), 8.27 (d, J = 2.0 Hz, 1H), 8.17−8.09 (m, 3H), 7.64 (t, J = 8.0 Hz, 1H), 7.19 (d, J = 8.8 Hz, 1H), 4.13 (s, 3H), 2.72 (s, 3H), 2.65 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ 197.5, 196.7, 160.5, 153.0, 141.4, 138.2, 132.8, 130.5, 130.1, 129.5, 126.8, 123.6, 117.6, 112.5, 56.6, 26.8, 26.5. HRMS-ESI (m/z): calcd for $C_{17}H_{17}N_2O_3$ [M + H]⁺ 297.1239, found 297.1243.

■ ASSOCIATED CONTENT

6 Supporting Information

Copies of ¹H NMR and ¹³C NMR spectra for all products. This material is available free of charge via the Internet at http://pubs. acs.org.

[■](http://pubs.acs.org) AUTHOR INFORMATION

Corresponding Author

*E-mail: sunpeipei@njnu.edu.cn.

Notes

The aut[hors declare no competin](mailto:sunpeipei@njnu.edu.cn)g financial interest.

■ ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (Projects 21272117 and 20972068) and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

■ REFERENCES

(1) For selected recent reviews, see: (a) Daugulis, O.; Do, H. Q.; Shabashov, D. Acc. Chem. Res. 2009, 42, 1074. (b) Chen, X.; Engle, K. M.; Wang, D. H.; Yu, J. Q. Angew. Chem., Int. Ed. 2009, 48, 5094. (c) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147. (d) Sun, C. L.; Li, B. J.; Shi, Z. J. Chem. Commun. 2010, 46, 677. (e) Yu, J. Q.; Shi, Z. J. Top. Curr. Chem. 2010, 292, 57. (f) Yeung, C. S.; Dong, V. M. Chem.

The Journal of Organic Chemistry Note and The Structure of the Structure of Note and No

Rev. 2011, 111, 1215. (g) Sun, C. L.; Li, B. J.; Shi, Z. J. Chem. Rev. 2011, 111, 1293. (h) Liu, C.; Zhang, H.; Shi, W.; Lei, A. W. Chem. Rev. 2011, 111, 1780. (i) Davies, H. M. L.; Du Bois, J.; Yu, J.-Q. Chem. Soc. Rev. 2011, 40, 1855 and other reviews in this themed issue. (j) Engle, K. M.; Mei, T. S.; Wasa, M.; Yu, J.-Q. Acc. Chem. Res. 2012, 45, 788. (k) Neufeldt, S. R.; Sanford, M. S. Acc. Chem. Res. 2012, 45, 936. (2) Furuya, T.; Kamlet, A. S.; Ritter, T. Nature 2011, 473, 470.

(3) (a) Schlummer, B.; Scholz, U. Adv. Synth. Catal. 2004, 346, 1599. (b) Roughley, S. D.; Jordan, A. M. J. Med. Chem. 2011, 54, 3451.

(4) Enthaler, S.; Company, A. Chem. Soc. Rev. 2011, 40, 4912.

(5) (a) Desai, L. V.; Malik, H. A.; Sanford, M. S. Org. Lett. 2006, 8, 1141. (b) Wang, G. W.; Yuan, T. T. J. Org. Chem. 2010, 75, 476. (c) Anand, M.; Sunoj, R. B. Org. Lett. 2011, 13, 4802. (d) Jiang, T. S.; Wang, G. W. J. Org. Chem. 2012, 77, 9504. (e) Zhang, S. Y.; He, G.; Zhao, Y. S.; Wright, K.; Nack, W. A.; Chen, G. J. Am. Chem. Soc. 2012, 134, 7313. (f) Li, W.; Sun, P. P. J. Org. Chem. 2012, 77, 8362.

(6) Hunger, K. Industrial Dyes: Chemistry, Properties, Applications; Wiley-VCH, Weinheim, Germany, 2003.

(7) (a) Natansohn, A.; Rochon, P. Chem. Rev. 2002, 102, 4139. (b) Deloncle, R.; Caminade, A.-M. J. Photochem. Photobiol., C 2010, 11, 25. (c) Bandara, D.; Burdette, C. S. Chem. Soc. Rev. 2012, 41, 1809. (d) Tamaoki, N. Adv. Mater. 2001, 13, 1135. (e) Feringa, B. L.; Van Delden, R. A.; Koumura, N.; Geertsema, E. M. Chem. Rev. 2000, 100, 1789. (f) Beharry, A. A.; Woolley, G. A. Chem. Soc. Rev. 2011, 40, 4422. (g) Lee, K. M.; Wang, H. D.; Koerner, H.; Vaia, A. R.; Tan, L. S.; White, J. T. Angew. Chem., Int. Ed. 2012, 51, 4117. (h) Breul, A. M.; Hager, M. D.; Schubert, U. S. Chem. Soc. Rev. 2013, 42, 5366.

(8) (a) Dick, A. R.; Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2004, 126, 2300. (b) Kalyani, D.; Dick, A. R.; Anani, W. Q.; Sanford, M. S. Tetrahedron 2006, 62, 11483.

(9) (a) Li, H. J.; Li, P. H.; Wang, L. Org. Lett. 2013, 15, 620. (b) Ma, X. T.; Tian, S. K. Adv. Synth. Catal. 2013, 355, 337.

(10) Lian, Y. J.; Bergman, R. G.; Lavis, L. D.; Ellman, J. A. J. Am. Chem. Soc. 2013, 135, 7122.

(11) (a) Powers, D. C.; Ritter, T. Nat. Chem. 2009, 1, 302. (b) Powers, D. C.; Geibel, M. A. L.; Klein, J. E. M. N.; Ritter, T. J. Am. Chem. Soc. 2009, 131, 17050.

(12) Zhang, C.; Jiao, N. Angew. Chem. 2010, 122, 6310; Angew. Chem., Int. Ed. 2010, 49, 6174.

(13) Zhao, R.; Tan, C. Y.; Xie, Y. H.; Gao, C. M.; Liu, H. X.; Jiang, Y. Y. Tetrahedron Lett. 2011, 52, 3805.